
partools: a Sensible Package for Large Data Sets

Norm Matlo�

University of California, Davis

November 4, 2024

The partools package is a general framework for parallel processing of large data sets and/or
highly-computational algorithms. It can be viewed on two levels:

� A set of various utilities to increase the usefulness of the R built-in package 'parallel'.

� An �un-MapReduce� paradigm, avoiding the drawbaccks while retaining the philosophy of
highly-distributed memory objects and �les of Hadoop and Spark.

1 Motivation

With the advent of Big Data, the Hadoop framework became ubiquitous in the years following its
birth in 2006. Yet it was clear from the start that Hadoop had major shortcomings in performance,
and eventually these came under serious discussion1 This resulted in a new platform, Spark, gaining
popularity. As with Hadoop, there is an R interface available for Spark, named SparkR.

Spark overcomes one of Hadoop's major problems, which is the lack of ability to cache data in a
multi-pass computation. However, Spark unfortunately retains the drawbacks of Hadoop:

� Spark still relies on a MapReduce paradigm, featuring a shu�e (systemwide sort) operation
after each pass of the data. This can be quite slow.2

� Thus SparkR can be considerably slower than Plain Old R (POR).

� Hadoop/Spark have a complex, rather opaque infrastructure, and rely on Java/Scala. This
makes them di�cult to install, con�gure and use for those who are not computer systems
experts.

� Although a major plus for Hadoop/Spark is fault tolerance, it is needed only for users working
on extremely large clusters, consisting of hundreds or thousands of nodes. Disk failure rates
are simply too low for fault tolerance to be an issue for many users who think they need
Hadoop/Spark but who do not have such large systems.3

1See for example �The Hadoop Honeymoon is Over,� https://www.linkedin.com/pulse/hadoop-honeymoon-over-
martyn-jones

2See �Low-Rank Matrix Factorizations at Scale: Spark for Scienti�c Data Analytics,� Alex Gittens, MMDS 2016
in the C context, and �Size of Datasets for Analytics and Implications for R,� Szilard Pafka, useR! 2016, in the R
context.

3https://wiki.apache.org/hadoop/PoweredBy

1

The one �rm advantage of Hadoop/Spark is their use of distributed �le systems. Under the philos-
ophy, �Move the computation to the data, rather than vice versa,� network tra�c may be greatly
reduced, thus speeding up computation.

In addition, this approach helps deal with the fact that Big Data sets may not �t into the memory of
a single machine. (This aspect is too often overlooked in discussions of parallel/distributed systems.)

1.1 An Alternative to Hadoop/Spark

Therefore:

It is desirable to have a package that retains the distributed-�le nature of Hadoop/Spark
while staying fully within the simple, familiar, yet powerful POR framework, no Java or
other external language needed.

The partools package is designed to meet these goals. It is intended as a simple,
sensible POR alternative to Hadoop/Spark. Though not necessarily appropriate
for all settings, for many R programmers, partools may be a much better choice than
Hadoop/Spark.

The package does not provide fault tolerance of its own. If this is an issue, one can provide it
externally, say with the XtreemFS system.

1.2 Software Alchemy

Some of the package's functions perform an operation I call Software Alchemy (SA).

Consider a large linear regression application. We might consider dividing the data into chunks,
calling lm() on each chunk, then simply average the estimated coe�cient vector over chunks. It can
be shown that under fairly general conditions, this works, in the sense of producing estimators with
the same asymptotic variance as that of the original estimator.

This technique was developed independently by a number of researchers. I call it Software Alchemy,
as it turns non-embarassingly parallel problems into embarassingly parallel ones.4

2 Where Is the Magic?

As you will see later, partools can deliver some impressive speedups. But there is nothing magical
about this. Instead, the value of the package stems from just two simple sources:

(a) The package follows a Keep It Distributed philosophy: Form distributed objects and keep
using them in distributed form throughout one's R session, avoiding wherever possible time-
consuming transfer of data between the workers and the manager.

(b) The package consists of a number of utility functions that greatly facilitate creating and storing
and distributed objects, both in memory and on disk, and distributed applications such as for
regression and classi�cation.

4Software Alchemy: Turning Complex Statistical Computations into Embarrassingly-Parallel Ones, Norman Mat-
lo�, Journal of Statistical Software, 71 (2016).

2

3 Overview of the partools Package

The package is based on the following very simple principles, involving distributed �les and distributed
data frames/matrices. We'll refer to nondistributed �les and data frames/matrices as monolithic.

� Files are stored in a distributed manner, in �les with a common basename. For example, the
virtual �le x is stored as separate �les x.01, x.02 etc.

� Data frames and matrices are stored in memory at the nodes in a distributed manner, with a
common name. For example, the data frame y is stored in chunks at the cluster nodes, each
chunk known as y at its node.

3.1 Platforms

Through the use of virtual clusters in the R 'parallel' package, these tools can be used either on
multicore machines or physical clusters, such as in the cloud. With the latter, a very high degree
of parallelism is potentially possible.

We will speak of a 'parallel' cluster has having a manager, sends work to and receives work from
the worker nodes.

3.2 Package Structure

Again, in a distributed �le, all the �le chunks have the same pre�x, and in a distributed data frame,
all chunks have the same name at the various cluster nodes. This plays a key role in the software.

The package consists of three main groups of functions:

3.2.1 Distributed-�le and distributed-data frame functions

� �lesplit(): Create a distributed �le from monolithic one.

� �lesplitrand(): Create a distributed �le from monolithic one, but randomize the record
order.

� �lecat(): Create a monotlithic �le from distributed one.

� �leread(): Read a distributed �le into distributed data frame.

� readnscramble(): Read a distributed �le into distributed data frame, but randomize the
record order.

� �lesave(): Write a distributed data frame to a distributed �le.

� �lechunkname(): Returns the full name of the �le chunk, associated with the calling cluster
node, including su�x, e.g. '01', '02' etc.

� distribsplit(): Create a distributed data frame/matrix from monotlithic one.

� distribcat(): Create a monotlithic data frame/matrix from distributed one.

3

3.2.2 Tabulative functions

� distribagg(): Distributed form of R's aggregate().

� distribcounts(): Wrapper for distribagg() to obtain table cell counts.

� d�leagg(): Like distribagg(), but �le-based rather than in-memory, in order to handle �les
that are too big to �t in memory, even on a distributed basis.

� distribgetrows(): Applies an R subset() or similar �ltering operation to the distributed
object, and collects the resulting rows into a single object at the caller.

� distribrange(): Distributed form of R's range().

3.3 Classical Computational Functions

� ca(): General SA algorithm.

� cabase(): Core of ca().

� caagg(): SA analog of distribagg().

� cameans(): Finds means in the speci�ed columns.

� caquantile(): Wrapper for SA version of R's quantile().

� calm(): Wrapper for SA version of R's lm().

� caglm(): Wrapper for SA version of R's glm().

� cakm(): Wrapper for SA version of R's kmeans().

� caprcomp(): Wrapper for SA version of R's prcomp().

3.4 Modern Statistical/Machine Learning Functions

� caclass�t(): Wrapper to do distributed �tting of a multiclass classi�cation method such as
random forests (rpart package) or SVM (e1071 package).

� caclasspred Does prediction on new data from the output of caclass�t().

3.5 Support Functions

� formrowchunks(): Form chunks of rows of a data frame/matrix.

� matrixtolist(): Forms an R list of the rows or columns of a data frame or matrix, one
row/column per list element.

� addlists(): �Add� two R lists, forming a new one. If an element name appears in the two
input lists, that name will appear in the new one, with value equal to the "sum" of the two
input values, calculated by sum(), cat() or other user-speci�ed function.

� dbs(), dbsmsg(), etc.: Debugging aids.

4

3.6 More on Software Alchemy

All the functions with names beginning with �ca� use the Software Alchemy (SA) method. The
idea is simple: Apply the given estimator to each chunk in the distributed object, and average over
chunks. It is proven that the resulting distributed estimator has the same statistical accuracy �
the same asymptotic variance � as the original serial one.5

A variant, suitable in many regression and classi�cation algorithms, retains the chunk output in
the result, rather than performing an avereging process. Consider for instance the use of LASSO
for regression.6 Each chunk may settle on a di�erent subset of the predictor variables, so it would
not make sense to average the estimated coe�cient vectors. Instead, the predictor subsets and
corresponding coe�cients are retained in the SA output. When one is faced with predicting the
response variable for a new data point, a prediction is calculated from each chunk, and those
predictions are averaged to obtain the �nal prediction for the new point. In a classi�cation context,
voting may be used.

Note that SA requires that the data be i.i.d. If the data was stored in some sorted order � in
the �ight data below, it was sorted by date � it needs to be randomize it �rst, using one of the
functions provided by partools for this purpose.

4 Sample Session

Our data set, from http://stat-computing.org/dataexpo/2009/the-data.html consists of the well-
known records of airline �ight delay. For convenience, we'll just use the data for 2008, which
consists of about 7 million records. This is large enough to illustrate speedup due to parallelism,
but small enough that we won't have to wait really long amounts of time in our sample session here.

The session was run on a 16-core machine, with a 16-node R virtual cluster in the sense of the R
parallel package (which is loaded by partools). Note carefully, though, that we should not expect
a 16-fold speedup. In the world of parallel computation, one usually gets of speedups of considerably
less than n for a platform of n computational entities, in this case with n = 16. Indeed, one is often
saddened to �nd that the parallel version is actually slower than the serial one!

To create our cluster cls, we ran

> cls <- makeCluster(16) # from 'parallel' library

> setclsinfo(cls) # 'partools' initialization function

4.1 Distribute the Data

The �le, 2008.csv, was �rst split into a distributed �le, stored in yr2008r.01,...,yr2008r.16, using
�lesplitrand(), and then read into memory at the 16 cluster nodes using �leread():

> filesplitrand(cls,'2008.csv','yr2008r',2,header=TRUE,sep=",")

> fileread(cls,'yr2008r','yr2008',2,header=TRUE, sep=",")

5In the world of parallel computation, the standard word for nonparallel is serial.
6Not currently available in the package, but easily coded under its framework.

5

The call to �lesplitrand() splits the �le as described above; since these �les are permanent, we
can skip this step in future R sessions involving this data (if the data doesn't change). The func-
tion �lesplitrand() was used instead of �lesplit() to construct the distributed �le, in order to
randomize the placement of the records of yr2008 across cluster nodes. As noted earlier, random
arrangement of the rows is required for SA.

The argument 2 here means that the su�xes are 2 digits, speci�cally '01', '02' and so on. So, we
create �les yr2008r.01 etc. using �lesplit(). The call to �leread() speci�es that cluster node 1
will read the �le yr2008r.01, cluster node 2 will read yr2008r.02 and so on. Each node will place
the data it reads into a local data frame yr2008.

Our data is now distributed across the memories of cluster nodes. Of course, if we did not need
permanent distributed �le storage, we could have just read in the original �le into a large data frame
at the manager node, then distributed the data frame to the nodes via distribsplit().

4.2 Distributed Aggregation of Summary Statistics

In order to run timing comparisons, the full �le was also read into memory at the cluster manager:

> yr2008 <- read.csv("yr2008")

(In practice, though, this would not be done, i.e. we would not have both distributed and monotlithic
versions of the data at the same time.)

The �rst operation run involved the package's distributed version of R's aggregate(). Here we
wanted to tabulate departure delay, arrival delay and �ight time, broken down into cells according
to �ight origin and destination. We'll �nd the maximum value in each cell.

> system.time(print(distribagg(cls, c("DepDelay","ArrDelay","AirTime"),

c("Origin","Dest"),"yr2008", FUN="max")))

...

5193 CDV YAK 327 325 54

5194 JNU YAK 317 308 77

5195 SLC YKM 110 118 115

5196 IPL YUM 162 163 26

...

user system elapsed

2.291 0.084 15.952

What distribagg() did here was have each cluster node run aggregate() on its own chunk of the
data, then (pardon the pun) aggregate the return values from the nodes.

The serial version was much slower.

> system.time(print(aggregate(cbind(DepDelay,ArrDelay,AirTime) ~

Origin+Dest,data=yr2008,FUN=max)))

...

5193 CDV YAK 327 325 54

5194 JNU YAK 317 308 77

5195 SLC YKM 110 118 115

6

5196 IPL YUM 162 163 26

...

user system elapsed

249.038 0.444 249.634

So, the results of distribagg() did indeed match those of aggregate(), but did so more than 15
times faster!

4.3 Un-distributing Data

Remember, the Keep It Distributed philosophy of partools is to create distributed objects and then
keep using them repeatedly in distributed form. However, in some cases, we may wish to collect a
distributed result into a monolithic object. This is done in the next example:

Say we wish to do a �lter operation, extracting the data on all the Sunday evening �ights, and
collect it into one place. Here is the direct version:

> sundayeve <- with(yr2008,yr2008[DayOfWeek==1 & DepTime > 1800,])

This actually is not a time-consuming operation, but again, in typical partools use, we would only
have the distributed version of yr2008. Here is how we would achieve the same e�ect from the
distributed object:

> sundayeved <-

distribgetrows(cls,'with(yr2008,yr2008[DayOfWeek==1 & DepTime > 1800,])')

What distribgetrows() does is produce a data frame at each cluster node, per the user's instruc-
tions, then combine them together at the caller via R's rbind(). The user sets the second argument,
a quoted string, to whatever she would have done on a serial basis. A simple concept, yet quite
versatile.

4.4 Integration with parallel

partools uses the parallel package, so one can leverage the functions in parallel to compute on
objects created through partools. clusterEvalQ() evaluates expressions on each of the workers,
and is useful for interacting with existing distributed objects. Below are a few examples.

object.size() estimates the size of the objects in memory.

> clusterEvalQ(cls, {

+ object.size(yr2008)

+ })

[[1]]

406905480 bytes

[[2]]

406905592 bytes

7

This code ran on a two node local cluster. Each of the two distributed objects occupies around 400
MB.

We can create a new column in yr2008 by calculating the minute of arrival or departure. One way
to do this is to write and test a function locally, use clusterExport() to send it to the cluster, and
�nally evaluate it with clusterEvalQ().

minute <- function(x){

x <- as.character(x)

Necessary to preserve NA values

x[is.na(x)] <- ""

matches <- regexpr(".?.?$", x)

two_right_digits <- regmatches(x, matches)

as.integer(two_right_digits)

}

Verify locally that code behaves as expected

minute(c(NA, 1L, 20L, 329L, 1900L))

[1] NA 1 20 29 0

Send the function to the data

clusterExport(cls, "minute")

Evaluate this expression on each worker node

clusterEvalQ(cls, {

yr2008$ArrMinute <- minute(yr2008$ArrTime)

yr2008$DepMinute <- minute(yr2008$DepTime)

NULL # Keeps It Distributed

})

The NULL at the end of the clusterEvalQ here is quite important, since otherwise data will
be unnecessarily transferred to the manager. An alternative to the above approach is to write a
function to do global assignment within the workers using �- , but this is more di�cult to verify
correct behavior.

4.5 Distributed NA Processing

As another example, say we are investigating data completeness. We may wish to �ag all records
having an inordinate number of NA values. As a �rst step, we may wish to add a column to our
data frame, indicating how many NA values there are in each row. If we did not have the advantage
of distributed computation, here is how long it would take for our �ight delay data:

> sumna <- function(x) sum(is.na(x))

> system.time(yr2008$n1 <- apply(yr2008[,c(5,7,8,11:16,19:21)],1,sumna))

user system elapsed

268.463 0.773 269.542

But it is of course much faster on a distributed basis:

8

> clusterExport(cls,"sumna",envir=environment())

> system.time(clusterEvalQ(cls,yr2008$n1 <- apply(yr2008[,c(5,7,8,11:16,19:21)],1,sumna)))

user system elapsed

0.094 0.012 16.758

The speedup here was about 16, fully utilizing all 16 cores.

Ordinarily, we would continue that NA analysis on a distributed basis, in accord with the partools
Keep It Distributed philosophy of setting up distributed objects and then repeatedly dealing with
them on a distributed basis. If our subsequent operations continue to have time complexity linear
in the number of records processes, we should continue to get speedups of about 16.

On the other hand, we may wish to gather together all the records have 8 or more NA values. In
the nonparallel context, it would take some time:

> system.time(na8 <- yr2008[yr2008$n1 > 7,])

user system elapsed

9.292 0.028 9.327

In the distributed manner, it is slightly faster:

> system.time(na8d <- distribgetrows(cls,'yr2008[yr2008$n1 > 7,]'))

user system elapsed

5.524 0.160 6.584

The speedup is less here, as the resulting data must travel from the cluster nodes to the cluster
manager. In our case here, this is just a memory-to-memory transfer rather than across a network,
as we are on a multicore machine, but it still takes time. If the number of records satisfying the
�ltering condition had been smaller than the 136246 we had here, the speedup factor would have
been greater.

5 SA: Software Alchemy

Now let's turn to statistical operations, starting of course with linear regression. As noted, some par-
tools functions make use of Software Alchemy, which replaces the given operation by a distributed,
statistically equivalent operation. This will often produce a signi�cant speedup. Note again that
though the result may di�erent from the non-distributed version, say in the third signi�cant digit,
it is just as accurate statistically; neither estimate is �better� than the other.

The SA function names begin with 'ca', for �chunk averaging.� The SA version of lm(), for instance,
is calm().

5.1 SA: Linear Regression

In the �ight data, we predicted the arrival delay from the departure delay and distance, comparing
the distributed and serial versions,

> system.time(print(lm(ArrDelay ~ DepDelay+Distance,data=yr2008)))

9

...

Coefficients:

(Intercept) DepDelay Distance

-1.061369 1.019154 -0.001213

user system elapsed

77.107 12.463 76.225

> system.time(print(calm(cls,'ArrDelay ~ DepDelay+Distance,data=yr2008')$tht))

(Intercept) DepDelay Distance

-1.061262941 1.019150592 -0.001213252

user system elapsed

13.414 0.691 18.396

Note again the quoted-string argument. This is the one the user will give to lm() in the serial case.

Linear regression is very hard to parallelize, so the speedup factor of more than 4 here is nice.
Coe�cient estimates were virtually identical.

5.2 SA: Principal ComponentsRegression

Next, principal components. Since R's prcomp() does not handle NA values for nonformula spec-
i�cations, let's do that separately �rst:

> system.time(cc <- na.omit(yr2008[,c(12:16,19:21)]))

user system elapsed

9.540 0.351 9.907

> system.time(clusterEvalQ(cls,cc <- na.omit(yr2008[,c(12:16,19:21)])))

user system elapsed

0.885 0.232 2.352

Note that this too was faster in the distributed approach, though both times were small. And now
the PCA runs:

> system.time(ccout <- prcomp(cc))

user system elapsed

61.905 49.605 58.444

> ccout$sdev

[1] 5.752546e+02 5.155227e+01 2.383117e+01 1.279210e+01 9.492825e+00

[6] 5.530152e+00 1.133015e-03 6.626621e-12

> system.time(ccoutdistr <- caprcomp(cls,'cc',8))

user system elapsed

5.023 0.604 8.949

> ccoutdistr$sdev

[1] 5.752554e+02 5.155127e+01 2.383122e+01 1.279184e+01 9.492570e+00

[6] 5.529869e+00 9.933142e-04 8.679427e-13

Once again, the second argument of caprcomp() is a quoted string, in which the user speci�es
the desired arguments to prcomp(). Since those arguments may be complicated, the code cannot
deduce the number of variables, and thus needs to be speci�ed in the third argument.

10

We have more than a 6-fold speedup here. Agreement of the component standard deviations is
good.7

5.3 SA: K-Means Clustering

The package also includes a distributed version of k-means clustering. Here it is run on the �ight
delay data. First, retain only the NA-free rows for the variables of interest, then run:

> fileread(cls,'yr2008r','yr2008',2,header=TRUE, sep=",")

> invisible(clusterEvalQ(cls,y28 <- na.omit(yr2008[,c(5:8,13:16,19:21)])))

> system.time(koutpar <- cakm(cls,'y28',3,11))

user system elapsed

4.083 0.132 9.293

Compare to serial:

> yr2008 <- read.csv('y2008')

> y28 <- na.omit(yr2008[,c(5:8,13:16,19:21)])

> system.time(koutser <- kmeans(y28,3))

user system elapsed

54.394 0.558 55.032

So, the distributed version is about 6 times faster. Results are virtually identical:

> koutpar$centers

[,1] [,2] [,3] [,4] [,5]

[1,] 1741.3967 1718.0296 1876.433 1895.435 110.4398

[2,] 932.4057 936.6907 1081.743 1082.813 108.5091

[3,] 1311.2193 1308.1838 1496.267 1525.790 267.8620

[,6] [,7] [,8] [,9] [,10]

[1,] 85.25672 13.101844 14.826940 569.2534 6.742315

[2,] 84.66763 3.091913 4.517502 561.0567 6.785464

[3,] 238.93152 8.668587 11.698193 1886.8964 7.541735

[,11]

[1,] 16.71571

[2,] 15.63046

[3,] 18.35916

> koutser$centers

DepTime CRSDepTime ArrTime CRSArrTime

1 1741.3888 1718.0217 1876.418 1895.425

2 932.3681 936.6674 1081.737 1082.809

3 1311.4436 1308.3525 1496.404 1525.905

CRSElapsedTime AirTime ArrDelay DepDelay

1 110.4363 85.25292 13.100842 14.826083

2 108.5151 84.67361 3.092439 4.518112

7Note that the last component, i.e. the eighth one, is minuscule, statistically 0. Again, SA gives results that are
statistically equivalent to the serial ones.

11

3 267.8669 238.93668 8.672439 11.701706

Distance TaxiIn TaxiOut

1 569.2226 6.742079 16.71604

2 561.1148 6.785409 15.63038

3 1886.9094 7.542760 18.35823

5.4 SA: Multiclass Classi�cation

Here we apply random forests to the UC Irvine forest cover type data, which has 590,000 records
of 55 variables. The last variable is the cover type, coded 1 through 7. The machine used was quad
core with hyperthreading level of 2, giving a theoretically possible parallelism degree of 8. Thus a
cluster of size 8 was tried.

We used random forests for our classi�cation algorithm (perhaps appropriate, given the data here!),
but could have used any algorithm whose R implemention has a predict() method. (Some output
not shown.)

> library(rpart)

> cls <- makeCluster(8)

> setclsinfo(cls)

> clusterEvalQ(cls,library(rpart)) # have each node load pkg

> cvr <- read.csv('~/Research/DataSets/ForestCover/CovTypeFull.csv',

header=FALSE)

> cvr$V55 <- as.factor(cvr$V55) # rpart requires factor for class

> trnidxs <- sample(1:580000,290000) # form training and test sets

> trn <- cvr[trnidxs,]

> tst <- cvr[-trnidxs,]

> distribsplit(cls,'trn')

do fit at each node; again, one argument is the serial argument

> system.time(fit <- caclassfit(cls,'rpart(V55 ~ .,data=trn,xval=25)'))

user system elapsed

0.126 0.005 25.294

> system.time(predout <- caclasspred(fit,tst,55,type='class'))

user system elapsed

26.132 0.910 27.045

> predout$acc

[1] 0.6692542

> system.time(fitser <- rpart(V55 ~ .,data=trn,xval=25))

user system elapsed

87.699 0.143 87.850

> # system.time(predoutser <- predict(fitser,tst[,-10],type='class'))

> system.time(predoutser <- predict(fitser,tst[,-55],type='class'))

user system elapsed

0.302 0.101 0.403

> mean(predoutser == tst[,55])

[1] 0.6691202

What caclass�t() does is run our classi�cation algorithm, in this case rpart, at each node, then
collect all the �tted models and return them to the caller. So here, after the call, �t will be an R

12

list, element i of which is the �t computed by cluster node i.

The call to caclasspred() then applies these �ts (on the parent node, not the cluster nodes) to our
test data, tst. The result, predout contains the predictions for each of the 149 cases in tst, using
voting among the eight �ts.

Here SA more than tripled the �tting speed, with the same accuracy. Prediction using SA is
relatively slow, due to the voting process, but arguably this is not an issue in a production setting,
and in any case, SA was substantially faster even in total �tting plus prediction time.

6 Dealing with Memory Limitations

The discussion so far has had two implicit assumptions:

� The number of �le chunks and the number of (R parallel) cluster nodes are equal, and the
latter is equal to the number of physical computing devices one has, e.g. the number of cores
in a multicore machine or the number of network nodes in a physical clsuter.

� Each �le chunk �ts into the memory8 of the corresponding cluster node.

The �rst assumption is not very important. If for some reason we have created a distributed �le
with more chunks than our number of physical computing devices, we can still set up an R parallel
cluster with size equal to the number of �le chunks. Then more than one R process will run on at
least some of the cluster nodes, albeit possibly at the expense of, say, an increase in virtual memory
swap operations.

The second assumption is the more pressing one. For this reason, the partools package includes
functions such as d�leagg(). The latter acts similarly to distribagg(), but with a key di�erence:
Any given cluster node will read from many chunks of the distributed �le, and will process those
chunks one at a time, never exceeding memory constraints.

Consider again our �ight delay data set. As a very simple example, say we have a two-node physical
cluster, and that each node has memory enough for only 1/4 of the data. So, we break up the
original data �le to 4 pieces, yr2008.1 through yr2008.4, and we run, say,

say we have machines pc28 and pc29 available for computation

> cls <- makeCluster(c('pc28','pc29'))

> dfileagg(cls,c('yr2008.1','yr2008.2','yr2008.3','yr2008.4'),

c("DepDelay","ArrDelay","AirTime"),

c("Origin","Dest"),"yr2008", FUN="max")

Our �rst cluster node will read yr2008.1 and yr2008.2, one at a time, while the second will read
yr2008.3 and yr2008.4, again one at a time, At each node, at any given time only 1/4 of the data
is in memory, so we don't exceed memory capacity. But they will get us the right answer, and will
do so in parallel, roughly with a speedup factor of 2.

More functions like this will be added to partools.

8Say, physical memory plus swap space.

13

