
Package: partools (via r-universe)
November 4, 2024

Version 1.1.6

Author Norm Matloff <normmatloff@gmail.com> [cre,aut], Clark
Fitzgerald <clarkfitzg@gmail.com> [aut], Reed Davis

<rdavis2468@gmail.com> [aut], Robin Yancey

<reyancey@ucdavis.edu> [aut], Shunxu Huang

<sxhuang@ucdavis.edu> [aut], Alex Rumbaugh

<aprumbaugh@ucdavis.edu> [ctb], Hadley Wickham

<h.wickham@gmail.com> [ctb]

Maintainer Norm Matloff <normmatloff@gmail.com>

Title Tools for the 'Parallel' Package

Description Miscellaneous utilities for parallelizing large
computations. Alternative to MapReduce. File splitting and
distributed operations such as sort and aggregate. ``Software
Alchemy'' method for parallelizing most statistical methods,
presented in N. Matloff, Parallel Computation for Data Science,
Chapman and Hall, 2015. Includes a debugging aid.

Depends parallel,stats,utils,data.table,pdist,methods

Suggests rpart,e1071,testthat, regtools

ByteCompile yes

NeedsCompilation no

License GPL (>= 2)

URL https://github.com/matloff/partools

BugReports https://github.com/matloff/partools/issues

RoxygenNote 6.0.1

Repository https://matloff.r-universe.dev

RemoteUrl https://github.com/matloff/partools

RemoteRef HEAD

RemoteSha 14a7a8c701167280d71b2991cb03f8232ddf4f19

1

https://github.com/matloff/partools
https://github.com/matloff/partools/issues

2 partools-package

Contents
partools-package . 2
ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq 5
caclassfit,caclasspred,vote,re_code . 9
cutbin . 11
dbs,killdebug,dbqmsg,dbqdump,dbqmsgstart,writemgrscreen,writewrkrscreens,dbqview,dbqsave,dbqload,pEnv 11
disksort . 14
findrow,makedff,[. 15
formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max 16
hqs,hqsTest . 20
newadult . 21
parpdist . 21
prgeng . 22
ptMEinit,ptMEinitSrvrs,ptMEinitCons,ptMEsend,ptMErecv,ptMEclose, ptMEtest,ptMEtestWrkr 23
snowdoop,filechunkname, etc... 24
sortbin . 28
writechunk . 29

Index 30

partools-package Overview and Package Reference Guide

Description

This package provides a broad collection of functions for parallel data manipulation and numerical
computation in R, either on multicore machines or clusters. It includes both high-level functions
such as distributed aggregate, as well as low-level building blocks.

This man page here is intended as a quick overview for newcomers, and as a list that experienced
partools users can use for quick reference.

Details

Definitions

The user has an instance of R, the manager node, running as the "main" function. One first sets
up a (virtual) cluster there, using R’s built-in parallel package. The elements of the cluster will be
referred to as worker nodes.

A distributed object, typically a data frame, is held in parts, one part per worker node. An ordinary
object, held at the manager node, is termed monolithic.

A distributed file will consist of parts, each of which is in a separate physical file. For example, a
distributed file x might consist of physical files x.01, x.02 and so on, but viewed programmaticly
at a single file. The file contents are assumed to be in the standard format of a constant number of
fields per record.

The "Leave It There" Principle

partools-package 3

Making the best use of this package centers around our Leave It There principle, which simply says
that one keeps objects distributed as long as possible. An object, say a data frame, may originally
be created on the manager node but then be split into a distributed version at the worker nodes. As
much as possible, the work in the user’s R session will involve that distributed data frame, with the
outputs of the user’s various operations NOT being collected back at the manager. This is a crucial
point, as it saves communication overhead, thus speeding up one’s application code.

Software Alchemy

This is our term for a statistical method, studied by a number of authors, for parallelizing compu-
taton. Say for instance we are performing logistic regression. Our data is converted to distributed
form (if not already in that form); we run the logit model at each worker node, yielding a vector
of estimated regression. coefficients, then average those vectors to obtain our final set of estimated
coefficients.

This will often result in linear, or even superlinear, speedup.

Also referred to as chunk averaging, ’ca’.

Startup and Global Information

The user forms a parallel cluster cls, then calls setclsinfo(cls) to initialize it. This creates
an R environment partoolsenv at each worker node, with components myid, the node’s ID, and
ncls, the number of workers in the cluster.

Function List

Functions for Forming Distributed Files and Data Frames, Manipulating Them, and Amalgamating
Them

• filesplit(): Create a distributed file from a monolithic one.

• filesplitrand(): Create a distributed file from monotlithic one, but randomize the record
order.

• filecat(): Create a monotlithic file from distributed one.

• fileread(): Read a distributed file into distributed data frame.

• readnscramble(): Read a distributed file into distributed data frame, but randomize the
record order.

• filesave(): Write a distributed data frame to a distributed file.

• filechunkname(): Returns the full name of the file chunk, associated with the calling cluster
node, including suffix, e.g. ’01’, ’02’ etc.

• filesort(): Disk-based sort.

• distribsplit(): Create a distributed data frame/matrix from monotlithic one.

• distribcat(): Create a monotlithic data frame/matrix from distributed one.

• distribagg(): Distributed analog of R’s aggregate(), returning result to manager. Has
special-case functions distribcounts and distribmeans. The function fileagg() is a file-
based analog of distribagg(), while dfileagg() returns results as a distributed data frame.

• distribrange(): Distributed analog of R’s range().

• distribrange(): Distributed analog of R’s range().

• dwhich.min(), dwhich.max(): Distributed analog of R’s which.min() and which.max().

4 partools-package

• distribgetrows(): Distributed analog of R’s select(), inputing a distributed data frame
and returning the result to the manager. The function filegetrows() does the same on a
distributed file, and dfilegetrows() does this too except that the result is a distributed data
frame.
dTopKVals(): Finds the k largest/smallest values in a distributed vector.
parpdist(): Parallel computation of the distances matrix from one matrix to another.

Software Alchemy Functions

• ca(): General chunk averaging. Core is cabase().

• calm(), caglm(), caprcomp(), cakm(), caknn(), carq(): Chunk averaging versions of
linear and generalized linear models, k-Nearest Neighbors and quantile regression.

• cameans(), caquantile(): Chunk averaging methods for finding means and quantiles.

Sorting Functions

The main one is hqs(), which performs a hyperquicksort among the worker nodes without manager
node intervention. Note that this function operates in keeping with the Leave It There principle; both
inputs and outputs are distributed vectors. Timing comparisons to R’s built-in sequential sort should
then collect a distributed vector to the manager node, sort there, then distribute back to the workers.

Two versions of disk-based sorting are available, filesort() and disksort(). These should be
considered experimental.

Message Passing Functions

These provide direct communication between worker nodes, useful for instance in hqs(). Only
simple send and receive are available at present.

• ptMEinit(): Initialize. Calls ptMEinitSrvrs() and ptMEinitCons(), which set up the
servers and the client-server connections.

• ptMEsend(), ptMErecv(): Send and receive functions.

Helper Functions

• formrowchunks(): Does just that, forms chunks of rows of a data frame or matrix.

• addlists(): Helper function. Adds two lists having the same keys.

• geteltis(): Extracts from a list of R vectors element i from each.

• getnumdigs(): Determines the number of digits in a positive integer, e.g. 1 for 8, 2 for 12, 3
for 550 and so on.

• makeddf(): Enables a distributed data frame to be viewed virtually as a monolithic one, using
global row numbers. The function findrow goes in the opposite direction. For a given row
number in the virtual data frame, this function will return the row number within node, and
the node number.

ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq 5

ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq

Software Alchemy: Turning Complex Statistical Computations into
Embarrassingly-Parallel Ones

Description

Easy parallelization of most statistical computations.

Usage

ca(cls,z,ovf,estf,estcovf=NULL,findmean=TRUE,scramble=FALSE)
cabase(cls,ovf,estf,estcovf=NULL,findmean=TRUE,cacall=FALSE,z=NULL,scramble=FALSE)
calm(cls,lmargs)
caglm(cls,glmargs)
caprcomp(cls,prcompargs, p)
cakm(cls,mtdf,ncenters,p)
cameans(cls,cols,na.rm=FALSE)
caquantile(cls,vec, probs = c(0.25, 0.5, 0.75),na.rm=FALSE)
caagg(cls,ynames,xnames,dataname,FUN)
caknn(cls, yname, k, xname='')
carq(cls,rqargs)

Arguments

cls A cluster run under the parallel package.

z A data frame, matrix or vector, one observation per row/element.

ovf Overall statistical function, say glm.

estf Function to extract the point estimate (typically vector-valued) from the output
of ovf.

estcovf If provided, function to extract the estimated covariance matrix of the output of
estf

.

findmean If TRUE, output the average of the estimates from the chunks; otherwise, output
only the estimates themselves.

lmargs Quoted string representing arguments to lm, e.g. R formula, data specification.

glmargs Quoted string representing arguments to glm, e.g. R formula, data specification,
and family argument.

rqargs Quoted string representing arguments to rq in the quantreg package,

prcompargs Quoted string representing arguments to prcomp.

p Number of columns in data

na.rm If TRUE, remove NA values from the analysis.

6 ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq

mtdf Quoted name of a distributed matrix or data frame.

ncenters Number of clusters to find.

cacall If TRUE, indicates that cabase had been called by ca

scramble If this and cacall are TRUE, randomize the data before distributing.

cols A quoted string that evaluates to a data frame or matrix.

vec A quoted string that evaluates to a vector.

yname A quoted variable name, for the Y vector.

k Number of nearest neighbors.

xname A quoted variable name, for the X matrix/data frame. If empty, it is assumed
that preprocessx has already been run on the nodes; if nonempty, that function
is run on this X data.

ynames A vector of quoted variable names.

xnames A vector of quoted variable names.

dataname Quoted name of a data frame or matrix.

probs As in the argument with the same name in quantile. Should not be 0.00 or
1.00, as asymptotic normality doesn’t hold.

FUN Quoted name of a function.

Details

Implements the “Software Alchemy” (SA) method for parallelizing statistical computations (N.
Matloff, Parallel Computation for Data Science, Chapman and Hall, 2015, with further details in
N. Matloff, Software Alchemy: Turning Complex Statistical Computations into Embarrassingly-
Parallel Ones, Journal of Statistical Software, 2016.) This can result in substantial speedups in
computation, as well as address limits on physical memory.

The method involves breaking the data into chunks, and then applying the given estimator to each
one. The results are averaged, and an estimated covariance matrix computed (optional).

Except for ca, it is assumed that the chunking has already been done, say via distribsplit or
readnscramble.

Note that in cabase, the data object is not specified explicitly in the argument list. This is done
through the function ovf.

Key point: The SA estimator is statistically equivalent to the original, nonparallel one, in the sense
that they have the SAME asymptotic statistical accuracy. Neither the non-SA nor the SA estimator
is "better" than the other, and usually they will be quite close to each other anyway. Since we would
use SA only with large data sets anyway (otherwise, parallel computation would not be needed for
speed), the asymptotic aspect should not be an issue. In other words, with SA we achieve the same
statistical accuracy while possibly attaining much faster computation.

It is vital to keep in mind that The memory space issue can be just as important as run time. Even
if the problem is run on many cores, if the total memory space needed exceeds that of the machine,
the run may fail.

Wrapper functions, applying SA to the corresponding R function (or function elsewere in this pack-
age):

ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq 7

• calm: Wrapper for lm.

• caglm: Wrapper for glm.

• caprcomp: Wrapper for prcomp.

• cakm: Wrapper for kmeans.

• cameans: Wrapper for colMeans.

• caquantile: Wrapper for quantile.

• caagg: Like distribagg, but finds the average value of FUN across the cluster nodes.

A note on NA values: Some R functions such as lm, glm and prcomp have an na.action argument.
The default is na.omit, which means that cases with at least one NA value will be discarded.
(This is also settable via options().) However, na.omit seems to have no effect in prcomp unless
that function’s formula option is used. When in doubt, apply the function na.omit directly; e.g.
na.omit(d) for a data frame d returns a data frame consisting of only the intact rows of d.

The method assumes that the base estimator is asymptotically normal, and assumes i.i.d. data.
If your data set had been stored in some sorted order, it must be randomized first, say using the
scramble option in distribsplit or by calling readnscramble, depending on whether your data
is already in memory or still in a file.

Value

R list with these components:

• thts, the results of applying the requested estimator to the chunks; the estimator from chunk
i is in row i

• tht, the chunk-averaged overall estimator, if requested

• thtcov, the estimated covariance matrix of tht, if available

The wrapper functions return the following list elements:

• calm, caglm: estimated regression coefficients and their estimated covariance matrix

• caprcomp: sdev (square roots of the eigenvalues) and rotation, as with prcomp; thts is
returned as well.

• cakm: centers and size, as with kmeans; thts is returned as well.

The wrappers that return thts are useful for algorithms that may expose some instability in the
original (i.e. non-SA) algorithm. With prcomp, for instance, the eigenvectors corresponding to the
smaller eigenvalues may have high variances in the nonparallel version, which will be reflected in
large differences from chunk to chunk in SA, visible in thts. Note that this reflects a fundamental
problem with the algorithm on the given data set, not due to Software Alchemy; on the contrary, an
important advantage of the SA approach is to expose such problems.

Author(s)

Norm Matloff

8 ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq

References

N. Matloff N (2016). "Software Alchemy: Turning Complex Statistical Computations into Embarrassingly-
Parallel Ones." Journal of Statistical Software, 71(4), 1-15.

Examples

set up 'parallel' cluster
cls <- makeCluster(2)
setclsinfo(cls)

generate simulated test data, as distributed data frame
n <- 10000
p <- 2
tmp <- matrix(rnorm((p+1)*n),nrow=n)
u <- tmp[,1:p] # "X" values
add a "Y" col
u <- cbind(u,u %*% rep(1,p) + tmp[,p+1])
now in u, cols 1,2 are the "X" variables, and col 3 is "Y",
with regress coefs (0,1,1), with tmp[,p+1] being the error term
distribsplit(cls,"u") # form distributed d.f.
apply the function
calm(cls,"u[,3] ~ u[,1]+u[,2]")$tht
calm(cls,"V3 ~ .,data=u")$tht
check; results should be approximately the same
lm(u[,3] ~ u[,1]+u[,2])
without the wrapper
ovf <- function(dummy=NULL) lm(V3 ~ .,data=z168)
ca(cls,u,ovf,estf=coef,estcovf=vcov)$tht

Not run:
Census data on programmers and engineers; include a quadratic term for
age, due to nonmonotone relation to income
data(prgeng)
distribsplit(cls,"prgeng")
caout <- calm(cls,"wageinc ~ age+I(age^2)+sex+wkswrkd,data=prgeng")
caout$tht
compare to nonparallel
lm(wageinc ~ age+I(age^2)+sex+wkswrkd,data=prgeng)
get standard errors of the beta-hats
sqrt(diag(caout$thtcov))

find mean age for all combinations of the cit and sex variables
caagg(cls,"age",c("cit","sex"),"prgeng","mean")
compare to nonparallel
aggregate(age ~ cit+sex,data=prgeng,mean)

data(newadult)
distribsplit(cls,"newadult")
caglm(cls," gt50 ~ ., family = binomial,data=newadult")$tht

caprcomp(cls,'newadult,scale=TRUE',5)$sdev
prcomp(newadult,scale=TRUE)$sdev

caclassfit,caclasspred,vote,re_code 9

cameans(cls,"prgeng")
cameans(cls,"prgeng[,c('age','wageinc')]")
caquantile(cls,'prgeng$age')

pe <- prgeng[,c(1,3,8)]
distribsplit(cls,"pe")
z1 <- cakm(cls,'pe',3,3); z1$size; z1$centers
check algorithm unstable
z1$thts # looks unstable

pe <- prgeng
pe$ms <- as.integer(pe$educ == 14)
pe$phd <- as.integer(pe$educ == 16)
pe <- pe[,c(1,7,8,9,12,13)]
distribsplit(cls,'pe',scramble=TRUE)
kout <- caknn(cls,'pe[,3]',50,'pe[,-3]')

End(Not run)

stopCluster(cls)

caclassfit,caclasspred,vote,re_code

Software Alchemy for Machine Learning

Description

Parallelization of machine learning algorithms.

Usage

caclassfit(cls,fitcmd)
caclasspred(fitobjs,newdata,yidx=NULL,...)
vote(preds)
re_code(x)

Arguments

cls A cluster run under the parallel package.

fitcmd A string containing a model-fitting command to be run on each cluster node.
This will typically include specification of the distributed data set.

fitobjs An R list of objects returned by the fitcmd calls.

newdata Data to be predicted from the fit computed by caclassfit.

yidx If provided, index of the true class values in newdata, typically in a cross-
validation setting.

10 caclassfit,caclasspred,vote,re_code

... Arguments to be passed to the underlying prediction function for the given
method, e.g. predict.rpart.

preds A vector of predicted classes, from which the "winner" will be selected by vot-
ing.

x A vector of integers, in this context class codes.

Details

This should work for almost any classification code that has a “fit” function and a predict method.

The method assumes i.i.d. data. If your data set had been stored in some sorted order, it must be
randomized first, say using the scramble option in distribsplit or by calling readnscramble,
depending on whether your data is already in memory or still in a file.

It is assumed that class labels are 1,2,... If not, use re_code.

Value

The caclassfit function returns an R list of objects as in fitobjs above.

The caclasspred function returns an R list with these components:

• predmat, a matrix of predicted classes for newdata, one row per cluster node

• preds, the final predicted classes, after using vote to resolve possible differences in predic-
tions among nodes

• consensus, the proportion of cases for which all nodes gave the same predictions (higher
values indicating more stability)

• acc, if yidx is non-NULL, the proportion of cases in which preds is correct

• confusion, if yidx is non-NULL, the confusion matrix

Author(s)

Norm Matloff

Examples

Not run:
set up 'parallel' cluster
cls <- makeCluster(2)
setclsinfo(cls)
data prep
data(prgeng)
prgeng$occ <- re_code(prgeng$occ)
prgeng$bs <- as.integer(prgeng$educ == 13)
prgeng$ms <- as.integer(prgeng$educ == 14)
prgeng$phd <- as.integer(prgeng$educ == 15)
prgeng$sex <- prgeng$sex - 1
pe <- prgeng[,c(1,7,8,9,12,13,14,5)]
pe$occ <- as.factor(pe$occ) # needed for rpart!
go
distribsplit(cls,'pe')

cutbin 11

library(rpart)
clusterEvalQ(cls,library(rpart))
fit <- caclassfit(cls,"rpart(occ ~ .,data=pe)")
predout <- caclasspred(fit,pe,8,type='class')
predout$acc # 0.36

stopCluster(cls)

End(Not run)

cutbin Cut Into Bins

Description

No boundaries on the endpoints, and handles character x. A little different than normal cut.

Usage

cutbin(x, breaks, bin_names)

Arguments

x column to be cut

breaks define the bins

bin_names names for the result

Value

bins factor

dbs,killdebug,dbqmsg,dbqdump,dbqmsgstart,writemgrscreen,writewrkrscreens,dbqview,dbqsave,dbqload,pEnv

Debugging aid for parallel cluster code.

Description

Aids in debugging of code written for the cluster operations in the parallel package.

12dbs,killdebug,dbqmsg,dbqdump,dbqmsgstart,writemgrscreen,writewrkrscreens,dbqview,dbqsave,dbqload,pEnv

Usage

dbs(nwrkrs,xterm=NULL,src=NULL,ftn=NULL)
writemgrscreen(cmd)
killdebug()
dbqmsgstart(cls)
dbqmsg(msg)
dbqview(cls,wrkrNum)
dbqsave(obj)
dbqload(cls,wrkrNum)
dbqdump()
pEnv(cls)

Arguments

cls A cluster for the parallel package.

nwrkrs Number of workers, i.e. size of the cluster.

xterm The string "xterm" or name of compatible terminal.

src Name of the source file to be debugged.

ftn Name of the function to be debugged.

cmd R command to be executed in manager screen.

wrkrNum ID of a worker node.

obj An R object.

msg A message to write to the debugging record file. Can be either a character string
or any expression that is printable by cat.

Details

A major obstacle to debugging cluster-based parallel applications is the lack of a terminal, thus
precluding direct use of debug and browser. This set of functions consists of two groups, one
for “quick and dirty” debugging, that writes debugging information to disk files, and the other for
more sophisticated work that deals with the terminal restriction. For both methods, make sure
setclsinfo has been called.

For “quick and dirty” debugging, there is dbqmsg, which prints messages to files, invoked from
within code running at the cluster nodes. There is one file for each member of the cluster, e.g.
dbq.001, dbq.002 and so on, and dbqmsg writes to the file associated with the worker invoking it.
Initialize via dbqmsgstart. The messages can be viewed via dbqview.

Also, R objects can be saved and reloaded via dbqsave and dbqload, again with a different one for
each worker.

Another quick approach is to call dbqdump, which will call R’s dump.frames, making a separate
output file for each cluster node. These can then be input to debugger to examine stack frames.

Finally, the current partoolsenv can be viewed using pEnv.

The more elaborate debugging tool, dbs, is the only one in this partools package requiring a Unix-
family system (Linux, Mac). To discuss it, suppose you wish to debug the function f in the file x.R.
Run, say, dbs(2,xterm="xterm",src="x.R",ftn="f"). Then three new terminal windows will

dbs,killdebug,dbqmsg,dbqdump,dbqmsgstart,writemgrscreen,writewrkrscreens,dbqview,dbqsave,dbqload,pEnv13

be created, one for the cluster manager and two for the cluster workers. The cluster will be named
cls. Automatically, the file x.R will be sourced by the worker windows, and debug(f) will be run
in them.

Then you simply debug as usual. Go to the manager window, and run your parallel application
launch call in the usual way, say clusterEvalQ(cls,f(5)). The function f will run in each
worker window, with execution automatically entering browser mode. You are now ready to single-
step through them, or execute any other browser operation.

If xterm is NULL, you will be prompted to create the terminal windows by hand (or use existing
ones), and run screen there as instructed. Terminal works on Macs; label the windows by hand,
by clicking "Shell" then "Edit".

When finished with the debugging session, run killdebug from the original window (the one from
which you invoked dbs) to quit the various screen processes.

Author(s)

Norm Matloff

Examples

Not run:
quick-and-dirty method
cls <- makeCluster(2)
setclsinfo(cls)
define 'buggy' function
g <- function(x,y) {u<-x+y; v<-x-y; dbqmsg(c(u,v)); u^2+v^2}
clusterExport(cls,"g")
set x and y at cluster nodes
clusterEvalQ(cls,{x <- runif(1); y <- runif(1)})
start debugging session
dbqmsgstart(cls)
run
clusterEvalQ(cls,g(x,y))
files dbs.1 and dbs.2 created, each reporting u,v values

dbs() method
make a test file
cat(c("f <- function(x) {"," x <- x + 1"," x^2","}"),file="x.R",sep="\n")
dbs(2,src="x.R",ftn="f")
now type in manager window:
clusterEvalQ(cls,f(5))
the 2 worker windows are now in the browser, ready for debugging

stopCluster(cls)

End(Not run)

14 disksort

disksort Sort File On Disk

Description

This function is designed to handle files larger than memory. At most nrows will be present in
memory at once. It is not parallel. For this to work efficiently it’s necessary that the data between
breaks fits into memory.

Usage

disksort(infile, outfile = NULL, sortcolumn = 1L, breaks = NULL,
nrows = 1000L, nbins = 10L, read.table.args = NULL,
write.table.args = NULL, cleanup = TRUE)

streambin(infile, firstchunk, sortcolumn = 1L, breaks = NULL,
nrows = 1000L, read.table.args = NULL)

Arguments

infile unsorted file like object to read from. See read.table.

outfile where to write the sorted file. See write.table. If infile is the name of a file
then the default prepends "sorted_" to this name.

sortcolumn which column of the data frame to sort on

breaks vector giving points to split data for binning

nrows number of rows in the data.frame held in memory

nbins number of bins for bin sort. Ignored if breaks is specified.

read.table.args

named list of extra arguments to read.table

write.table.args

named list of extra arguments to write.table. Defaults to using read.table.args to
preserve the original formatting.

cleanup remove intermediate files?

firstchunk first rows from infile

Functions

• streambin: Stream File Into Bins
Read a data frame, split it into bins, and write to those bins on disk.

findrow,makedff,[15

findrow,makedff,[Virtual Data Structures

Description

Accessing a Distributed Data Frame or Similar Object As a Virtual Monolithic Object

Usage

findrow(cls, i, objname)
makeddf(dname,cls)

Arguments

cls A cluster run under the parallel package.
i A row number in a distributed data frame or similar object.
objname Name of such an object.
dname Name of such an object.

Details

These functions enable the user at the manager node to treat a distributed data frame as a virtual
monolithic one, querying the values in specified row and clumn ranges.
Say we have a distributed data frame d on two worker nodes, with five rows at the first node and
five at the second. Row 6 of the virtual data frame, then, will consist of the first row in at the second
node.
Viewing this virtual data frame requires creating an object of class 'ddf', using makeddf. Note that
there is no actual data at the manager node. This class overrides the reference operator '['.
The function findrow goes in the opposite direction. For a given row number in the virtual data
frame, this function will return the row number within node, and the node number.

Author(s)

Norm Matloff and Reed Davis

Examples

cls <- makeCluster(2)
setclsinfo(cls)
clusterEvalQ(cls,m <- data.frame(rbind(1:2,3:4)+partoolsenv$myid))
makeddf('m',cls)
m[2,2] # 5
m[3,2] # 4
m[3,1] # 3
m[,1] # 2 4 3 5
m[4,] # 5 6
m[,] # the entire 2x2 data frame
findrow(cls,3,'m') # 1 2; row 3 in the virtual df is row 1 of m in node 2

16formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max

formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max

Utilities for parallel cluster code.

Description

Miscellaneous code snippets for use with the parallel package, including “Snowdoop.”

Usage

formrowchunks(cls,m,mchunkname,scramble=FALSE)
matrixtolist(rc,m)
addlists(lst1,lst2,add)
setclsinfo(cls)
getpte()
exportlibpaths(cls)
distribsplit(cls,dfname,scramble=FALSE)
distribcat(cls,dfname)
distribagg(cls,ynames,xnames,dataname,FUN,FUNdim=1,FUN1=FUN)
distribrange(cls,vec,na.rm=FALSE)
distribcounts(cls,xnames,dataname)
distribmeans(cls,ynames,xnames,dataname,saveni=FALSE)
dwhich.min(cls,vecname)
dwhich.max(cls,vecname)
distribgetrows(cls,cmd)
distribisdt(cls,dataname)
docmd(toexec)
doclscmd(cls,toexec)
geteltis(lst,i)
ipstrcat(str1 = stop("str1 not supplied"), ..., outersep = "", innersep = "")

Arguments

cls A cluster for the parallel package.

scramble If TRUE, randomize the row order in the resulting data frame.

rc Set to 1 for rows, other for columns.

m A matrix or data frame.

mchunkname Quoted name to be given to the created chunks.

lst1 An R list.

lst2 An R list.

add “Addition” function, which could be summation, concatenation and so on.

dfname Quoted name of a data frame, either centralized or distributed.

ynames Vector of quoted names of variables on which FUN is to be applied.

vecname Quoted name of a vector.

formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max17

... One of more vectors of character strings, where the vectors are typically of
length 1.

xnames Vector of quoted names of variables that define the grouping.

dataname Quoted name of a distributed data frame or data.table.

saveni If TRUE, save the chunk sizes.

FUN Quoted name of a single-argument function to be used in aggregating within
cluster nodes. If dataname is the name of a data.table, FUN must be a vector of
function names, of length equal to that of ynames.

FUNdim Number of elements in the return value of FUN. Must be 1 for data.tables.

FUN1 Quoted name of function to be used in aggregation between cluster nodes.

vec Quoted expression that evaluates to a vector.

na.rm Remove NA values.

cmd An R command.

toexec Quoted string containing command to be executed.

lst An R list of vectors.

i A column index

str1 A character string.

outersep Separator, e.g. a comma, between strings specified in ...

innersep Separator, e.g. a comma, within string vectors specified in ...

Details

The setclsinfo function does initialization needed for use of the tools in the package.

formrowchunks splits m into chunks of rows and puts each chunk into a global variable called
mchunkname in the global space of the worker.

A call to matrixtolist extracts the rows or columns of a matrix or data frame and forms an R list
from them.

The function addlists does the following: Say we have two lists, with numeric values. We wish
to form a new list, with all the keys (names) from the two input lists appearing in the new list. In
the case of a key in common to the two lists, the value in the new list will be the sum of the two
individual values for that key. (Here “sum” means the result of applying add.) For a key appearing
in one list and not the other, the value in the new list will be the value in the input list.

The function exportlibpaths, invoked from the manager, exports the manager’s R search path to
the workers.

The function distribsplit splits a data frame dfname into approximately equal-sized chunks of
rows, placing the chunks on the cluster nodes, as global variables of the same name. The opposite
action is taken by distribcat, coalsecing variables of the given name in the cluster nodes into one
grand data frame as the calling (i.e. manager) node.

The package’s distribagg function is a distributed (and somewhat restricted) form of aggregate.
The latter is called to each distributed chunk with the function FUN. The manager collects the results
and calls FUN1.

18formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max

The special cases of aggregating counts and means is handled by the wrappers distribcounts and
distribmeans. In each case, cells are defined by xnames, and aggregation done first within workers
and then across workers.

The distribrange function is a distributed form of range.

The dwhich.min and dwhich.max functions are distributed analogs of R’s which.min and which.max.

The distribgetrows function is useful in a variety of situations. It can be used, for instance, as
a distributed form of select. In the latter case, the specified rows will be selected at each cluster
node, then rbind-ed together at the caller.

The docmd function executes the quoted command, useful for building up complex command for
remote execution. The doclscmd function does that directly.

An R formula will be constructed from the arguments ynames and xnames, with the latter put on
the left side of the ~ sign, with cbind for combining, and the latter put on the right side, with + signs
as delimiters.

The geteltis function extracts from an R list of vectors element i from each.

Value

In the case of addlists, the return value is the new list.

The distribcat function returns the concatenated data frame; distribgetrows works similarly.

The distribagg function returns a data frame, the same as would a call to aggregate, though
possibly in different row order; distribcounts works similarly.

The dwhich.min and dwhich.max functions each return a two-tuple, consisting of the node number
and row number which node at which the min or max occurs.

Author(s)

Norm Matloff

Examples

examples of addlists()
l1 <- list(a=2, b=5, c=1)
l2 <- list(a=8, c=12, d=28)
addlists(l1,l2,sum) # list with a=10, b=5, c=13, d=28
z1 <- list(x = c(5,12,13), y = c(3,4,5))
z2 <- list(y = c(8,88))
addlists(z1,z2,c) # list with x=(5,12,13), y=(3,4,5,8,88)

need 'parallel' cluster for the remaining examples
cls <- makeCluster(2)
setclsinfo(cls)

check it
clusterEvalQ(cls,partoolsenv$myid) # returns 1, 2
clusterEvalQ(cls,partoolsenv$ncls) # returns 2, 2

formrowchunks example; see up a matrix to be distributed first
m <- rbind(1:2,3:4,5:6)

formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max19

apply the function
formrowchunks(cls,m,"mc")
check results
clusterEvalQ(cls,mc) # list of a 1x2 and a 2x2 matrix

matrixtolist(1,m) # 3-component list, first is (1,2)

test of of distribagg():
form and distribute test data
x <- sample(1:3,10,replace=TRUE)
y <- sample(0:1,10,replace=TRUE)
u <- runif(10)
v <- runif(10)
d <- data.frame(x,y,u,v)
distribsplit(cls,"d")
check that it's there at the cluster nodes, in distributed form
clusterEvalQ(cls,d)
d
try the aggregation function
distribagg(cls,c("u","v"), c("x","y"),"d","max")
check result
aggregate(cbind(u,v) ~ x+y,d,max)

real data
mtc <- mtcars
distribsplit(cls,"mtc")

distribagg(cls,c("mpg","disp","hp"),c("cyl","gear"),"mtc","max")
check
aggregate(cbind(mpg,disp,hp) ~ cyl+gear,data=mtcars,FUN=max)

distribcounts(cls,c("cyl","gear"),"mtc")
check
table(mtccyl,mtcgear)

find mean mpg, hp for each cyl/gear combination
distribmeans(cls,c('mpg','hp'),c('cyl','gear'),'mtc')

extract and collect all the mtc rows in which the number of cylinders is 8
distribgetrows(cls,'mtc[mtc$cyl == 8,]')
check
mtc[mtc$cyl == 8,]

same for data.tables
mtc <- as.data.table(mtc)
setkey(mtc,cyl)
distribsplit(cls,'mtc')
distribcounts(cls,c("cyl","gear"),"mtc")
distribmeans(cls,c('mpg','hp'),c('cyl','gear'),'mtc')

dwhich.min(cls,'mtc$mpg') # smallest is at node 1, row 15
dwhich.max(cls,'mtc$mpg') # largest is at node 2, row 4

20 hqs,hqsTest

stopCluster(cls)

hqs,hqsTest Distributed Sort

Description

Sort a distributed vector.

Usage

hqs(cls,xname)
hqsTest(vlength,clength)

Arguments

cls A cluster for the parallel package.

xname Name of a distributed vector.

vlength Length of the test vector.

clength Size of the test cluster.

Details

In hqs, the distributed vector is sorted using the Hyperquicksort algorithm. In keeping with par-
tools’ Leave It There philosophy, both input and output are distributed; the sorted vector is NOT
returned to the caller. The name of the sorted distributed vector will be chunk. If the caller needs
the sorted vector, this can be obtained via distribcat.

Author(s)

Robin Yancey, Norm Matloff

Examples

cls <- makeCluster(4)
setclsinfo(cls)
z <- sample(1:50,25)
z # view unsorted vector
distribsplit(cls,'z') # distribute it
hqs(cls,'z')
view the distributed sorted vector
clusterEvalQ(cls,chunk)
optionally collect the results at the caller
distribcat(cls,'chunk')

newadult 21

newadult UCI adult income data set, adapted

Description

This data set is adapted from the Adult data from the UCI Machine Learning Repository, which was
in turn adapted from Census data on adult incomes and other demographic variables. The UCI data
is used here with permission from Ronny Kohavi.

The variables are:

• gt50, which converts the original >50K variable to an indicator variable; 1 for income greater
than $50,000, else 0

• edu, which converts a set of education levels to approximate number of years of schooling

• age

• gender, 1 for male, 0 for female

• mar, 1 for married, 0 for single

Usage

data(newadult); newadult

parpdist Partools Apps

Description

General parallel applications.

Usage

parpdist(x,y,cls)

Arguments

cls A cluster run under the parallel package.

x A data matrix

y A data matrix

Details

Parallel wrapper for pdist from package of the same name. Finds all the distances from rows in x
to rows in y.

22 prgeng

Value

Object of type "pdist".

Author(s)

Norm Matloff

Examples

set up 'parallel' cluster
cls <- makeCluster(2)
setclsinfo(cls)

x <- matrix(runif(20),nrow=5)
y <- matrix(runif(32),nrow=8)
2 calls should have identical resultsW
pdist(x,y,cls)@dist
parpdist(x,y,cls)@dist

stopCluster(cls)

prgeng Silicon Valley programmers and engineers

Description

This data set is adapted from the 2000 Census (5% sample, person records). It is restricted to
programmers and engineers in the Silicon Valley area.

The variable codes, e.g. occupational codes, are available from the Census Bureau, at http://www.
census.gov/prod/cen2000/doc/pums.pdf. (Short code lists are given in the record layout, but
longer ones are in the appendix Code Lists.)

The variables are:

• age, with a U(0,1) variate added for jitter
• cit, citizenship; 1-4 code various categories of citizens; 5 means noncitizen (including per-

manent residents
• educ: 01-09 code no college; 10-12 means some college; 13 is a bachelor’s degree, 14 a

master’s, 15 a professiona deal and 16 is a doctorate
• occ, occupation
• birth, place of birth
• wageinc, wage income
• wkswrkd, number of weeks worked
• yrentry, year of entry to the U.S. (0 for natives)
• powpuma, location of work
• gender, 1 for male, 2 for female

http://www.census.gov/prod/cen2000/doc/pums.pdf
http://www.census.gov/prod/cen2000/doc/pums.pdf

ptMEinit,ptMEinitSrvrs,ptMEinitCons,ptMEsend,ptMErecv,ptMEclose, ptMEtest,ptMEtestWrkr 23

Usage

data(prgeng); prgeng

ptMEinit,ptMEinitSrvrs,ptMEinitCons,ptMEsend,ptMErecv,ptMEclose,
ptMEtest,ptMEtestWrkr

Message-passing utilities.

Description

Simple MPI-like functions.

Usage

ptMEinit(cls)
ptMEinitSrvrs()
ptMEinitCons(srvr)
ptMEsend(obj,dest)
ptMErecv(dest)

Arguments

cls A cluster for the parallel package.

srvr A server, one of the worker nodes.

src A worker node from which to receive a message.

dest A worker node to which a message is to be sent.

obj An R object.

Details

This system of functions implements a message-passing system, similar to MPI/Rmpi but much
simpler and without the need for configuration.

Functions:

• ptMEinit: General system initialization.

• ptMEinitSrvrs: Called by ptMEinit. Sets up socket connections for each pair of worker
nodes. Each worker node hosts a server for use by all nodes having partoolsenv$myid less
than the server. Returns the server port.

• ptMEinitCons: Also called by ptMEinit. Each worker node, acting as a client, makes a
connection with all servers having partoolsenv$myid greater than the client.

• ptMEsend: Send the given object to the given destination.

• ptMErecv: Receive an object from the given source. Returns the received object.

• ptMEclose: Close all worker-worker connections.

24 snowdoop,filechunkname, etc...

Value

The function ptMErecv() returns the received value. The intermediate function ptMEinitSrvrs
returns a randomly chosen server port number.

Author(s)

Robin Yancey, Norm Matloff

snowdoop,filechunkname, etc...

Snowdoop.

Description

“Snowdoop”: Utilities for distributed file storage, access and related operations.

Usage

filechunkname(basenm,ndigs,nodenum=NULL)
filesort(cls,infilenm,colnum,outdfnm,infiledst=FALSE,

ndigs=0,nsamp=1000,header=FALSE,sep="",usefread=FALSE, ...)
filesplit(nch,basenm,header=FALSE,seqnums=FALSE)
filesplitrand(cls,fname,newbasename,ndigs,header=FALSE,sep)
fileshuffle(inbasename, nout, outbasename, header = FALSE)
linecount(infile,header=FALSE,chunksize=100000)
filecat(cls, basenm, header = FALSE)
readnscramble(cls,basenm,header=FALSE,sep= " ")
filesave(cls,dname,newbasename,ndigs,sep, ...)
fileread(cls,fname,dname,ndigs,header=FALSE,sep=" ",usefread=FALSE, ...)
getnumdigs(nch)
fileagg(fnames,ynames,xnames,header=FALSE,sep= " ",FUN,FUN1=FUN)
dfileagg(cls,fnames,ynames,xnames,header=FALSE,sep=" ",FUN,FUN1=FUN)
filegetrows(fnames,tmpdataexpr,header=FALSE,sep=" ")
dfilegetrows(cls,fnames,tmpdataexpr,header=FALSE,sep=" ")
dTopKVals(cls,vecname,k)

Arguments

cls A cluster for the parallel package.

nch Number of chunks for the file split.

basenm A chunked file name, minus suffix.

infile Name of a nonchunked file.

ndigs Number of digits in the chunked file name suffix.

nodenum If non-NULL, get the name of the file chunk of cluster node nodenum; otherwise,
get the name for the chunk associated with this node.

snowdoop,filechunkname, etc... 25

infilenm Name of input file (without suffix, if distributed).

outdfnm Quoted name of a distributed data frame.

infiledst If TRUE, infilenm is distributed.

colnum Column number on which the sort will be done. It is assumed that this data
column is free of NAs.

usefread If true, use fread instead of read.table; generally much faster; requires data.table
package.

nsamp Number of records to sample in each file chunk to determine bins for the bucket
sort.

header TRUE if the file chunks have headers.

seqnums TRUE if the file chunks will have sequence numbers.

sep Field delimiter used in read.table.

chunksize Number of lines to read at a time, for efficient I/O.

dname Quoted name of a distributed data frame or matrix. For filesave, the object
must have column names.

fname Quoted name of a distributed file.

fnames Character vector of file names.

newbasename Quoted name of the prefix of a distributed file, e.g. xyz for a distributed file
xyz.01, xyz.02 etc.

ynames Vector of quoted names of variables on which FUN is to be applied.

xnames Vector of quoted names of variables to be used for cell definition.

tmpdataexpr Expression involving a data frame tmpdataexpr. See below.

FUN First-level aggregation function.

FUN1 Second-level aggregation function.

inbasename basename of the input files, e.g. x for x.1, x.2, ...

outbasename basename of the output files

nout number of output files

... Additional arguments to read.table, write.table

vecname Quoted name of a distributed vector.

k Number of top/bottom values to fetch.

Details

Use filesplit to convert a single file into distributed one, with nch chunks. The file header, if
present, will be retained in the chunks. If seqnums is TRUE, each line in a chunk will be preceded
by the line number it had in the original file.

The reverse operation to filesplit is performed by filecat, which converts a distributed file into
a single one.

The fileagg function does an out-of-memory, multifile version of aggregate, reading the specified
files one at a time, and returning a grand aggregation. The function dfileagg partitions the specified
group of files to a partools cluster, has each call fileagg, and again aggregates the results.

26 snowdoop,filechunkname, etc...

The function filegetrows reads in the files in fnames, one at a time, naming the resulting in-
memory data tmpdata each time. (It is assumed that the data fit in memory.) The function applies
the user command tmpdataexpr to tmpdata, producing a subset of tmpdata. All of these sub-
sets are combined using rbind, yielding the return value. The paired function dfilegetrows is a
distributed wrapper for filegetrows, just as dfileagg is for fileagg.

Use filesort to do a file sort, with the input file being either distributed or ordinary, placing the
result as a distributed data frame/matrix in the memories of the cluster nodes. The first nsamp
records are read from the file, and are used to form one quantile range for each cluster node. Each
node then reads the input file, retaining the records in its assigned range, and sorts them. This results
in the input file being sorted, in memory, in a distributed manner across nodes, under the specifid
name. At present, this utility is not very efficient.

Operations such as ca need i.i.d. data. If the original file storage was ordered on some variable, one
needs to randomize the data first. There are several options:

• readnscramble: This produces a distributed data frame/matrix under the name basenm. Note
that a record in chunk i of the distributed file will likely end up in chunk j in the distributed
data frame/matrix, with j different from i.

• filesplitrand: Use this you wish to directly produce a randomized distributed file from a
monolithic one. It will read the file into memory, chunk it at the cluster nodes, each of which
will save its chunk to disk.

• fileshuffle: If you need to avoid reading big files into memory, use this. You must run
filesplit first, and then run fileshuffle several times for a good shuffle.
Note that this function is also useful if your cluster size changes. A distributed file of m chunks
can now be converted to one with n chunks, either more or fewer than before.

If you wish to use this same randomized data in a future session, you can save it as a distributed file
by calling filesave. Of course, this function is also useful if one wishes to save a distributed data
frame or matrix that was created computationally rather than from read from a distributed file. To
go the other direction, i.e. read a distributed file, use fileread.

Some of the functions here are useful mainly as intermediate operations for the others:

• The function filechunkname returns the name of the file chunk for the calling cluster node.

• The linecount function returns the number of lines in a text file.

• A call to getnumdigs returns the number of digits in a distributed file name suffix.

The function dTopKVals returns the k most extreme values in the distributed vector specified by
vecname. If k is positive, this will be the top k values; for negative k, it will be the bottom abs(k)
values.

Author(s)

Norm Matloff

Examples

cls <- makeCluster(2)
setclsinfo(cls)

snowdoop,filechunkname, etc... 27

example of filesplit()
make test input file
m <- rbind(1:2,3:4,5:6)
write.table(m,"m",row.names=FALSE,col.names=FALSE)
apply the function
filesplit(2,"m",seqnums=TRUE)
file m.1 and m.2 created, with contents c(1,1,2) and
rbind(c(2,3,4),c(3,5,6)), respectively
check it
read.table("m.1",header=FALSE,row.names=1)
read.table("m.2",header=FALSE,row.names=1)
m

example of filecat(); assumes filesplit() example above already done
delete file m so we can make sure we are re-creating it
unlink("m")
filecat(cls,"m")
check that file m is back
read.table("m",row.names=1)

example of filesave(), fileread()
make test distributed data frame
clusterEvalQ(cls,x <- data.frame(u = runif(5),v = runif(5)))
apply filesave()
filesave(cls,'x','xfile',1,' ')
check it
fileread(cls,'xfile','xx',1,header=TRUE,sep=' ')
clusterEvalQ(cls,xx)
clusterEvalQ(cls,x)

example of filesort()
make test distributed input file
m1 <- matrix(c(5,12,13,3,4,5,8,8,8,1,2,3,6,5,4),byrow=TRUE,ncol=3)
m2 <- matrix(c(0,22,88,44,5,5,2,6,10,7,7,7),byrow=TRUE,ncol=3)
write.table(m1,"m.1",row.names=FALSE)
write.table(m2,"m.2",row.names=FALSE)
sort on column 2 and check result
filesort(cls,"m",2,"msort",infiledst=TRUE,ndigs=1,nsamp=3,header=TRUE)
clusterEvalQ(cls,msort) # data should be sorted on V2
check by comparing to input
m1
m2
m <- rbind(m1,m2)
write.table(m,"m",row.names=FALSE)
clusterEvalQ(cls,rm(msort))
filesort(cls,"m",2,"msort",infiledst=FALSE,nsamp=3,header=TRUE)
clusterEvalQ(cls,msort) # data should be sorted on V2

example of readnscramble()
co2 <- head(CO2,25)
write.table(co2,"co2",row.names=FALSE) # creates file 'co2'
filesplit(2,"co2",header=TRUE) # creates files 'co2.1', 'co2.2'

28 sortbin

readnscramble(cls,"co2",header=TRUE) # now have distrib. d.f.
save the scrambled version to disk
filesave(cls,'co2','co2s',1,sep=',')

example of fileshuffle()
make test file, 'test'
cat('a','bc','def','i','j','k',file='test',sep='\n')
filesplit(2,'test') # creates files 'test.1','test.2'
fileshuffle('test',2,'testa') # creates shuffled files 'testa.1','testa.2'

example of filechunkname()
clusterEvalQ(cls,filechunkname("x",3)) # returns "x.001", "x.002"

example of getnumdigs()
getnumdigs(156) # should be 3

examples of filesave() and fileread()
mtc <- mtcars
distribsplit(cls,"mtc")
save distributed data frame to distributed file
filesave(cls,'mtc','ctm',1,',')
read it back in to a new distributed data frame
fileread(cls,'ctm','ctmnew',1,header=TRUE,sep=',')
check it
clusterEvalQ(cls,ctmnew)
try dfileagg() on it (not same as distribagg())
dfileagg(cls,c('ctm.1','ctm.2'),c("mpg","disp","hp"),c("cyl","gear"),header=TRUE,sep=",","max")
check
aggregate(cbind(mpg,disp,hp) ~ cyl+gear,data=mtcars,FUN=max)
extract the records with 4 cylinders and 4 gears (again, different
from distribgetrows())
cmd <- 'tmpdata[tmpdata$cyl == 4 & tmpdata$gear == 4,]'
dfilegetrows(cls,c('ctm.1','ctm.2'),cmd,header=TRUE,sep=',')
check
mtc[mtc$cyl == 4 & mtc$gear == 4,]

x <- sample(1:3,10,replace=TRUE)
y <- sample(0:1,10,replace=TRUE)
u <- runif(10)
v <- runif(10)
d <- data.frame(x,y,u,v)
distribsplit(cls,"d")
dTopKVals(cls,'d$u',2) # 0.985, 0.858
dTopKVals(cls,'d$u',-2) # 0.066, 0.326

stopCluster(cls)

sortbin Sort Bin And Write To Outfile

writechunk 29

Description

Last step of disksort

Usage

sortbin(fname, sortcolumn, outfile, nchunks)

Arguments

fname name of an intermediate file

sortcolumn See disksort

outfile See disksort.

nchunks total number of chunks expected

writechunk Write Chunk Into Bins

Description

Intermediate step in disksort.

Usage

writechunk(chunk, bin_names, bin_files, breaks, sortcolumn)

Arguments

chunk data.frame to be binned

bin_names names for each bin. Useful for debugging

bin_files list of files opened in binary append mode

breaks defines the bins

sortcolumn column determining the bin

Index

[(findrow,makedff,[), 15

addlists
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

ca
(ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq),
5

ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq,
5

caagg
(ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq),
5

cabase
(ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq),
5

caclassfit
(caclassfit,caclasspred,vote,re_code),
9

caclassfit,caclasspred,vote,re_code, 9
caclasspred

(caclassfit,caclasspred,vote,re_code),
9

caglm
(ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq),
5

cakm
(ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq),
5

caknn
(ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq),
5

calm
(ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq),
5

cameans
(ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq),
5

caprcomp
(ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq),
5

caquantile
(ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq),
5

carq
(ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq),
5

cut, 11
cutbin, 11

dbqdump
(dbs,killdebug,dbqmsg,dbqdump,dbqmsgstart,writemgrscreen,writewrkrscreens,dbqview,dbqsave,dbqload,pEnv),
11

dbqload
(dbs,killdebug,dbqmsg,dbqdump,dbqmsgstart,writemgrscreen,writewrkrscreens,dbqview,dbqsave,dbqload,pEnv),
11

dbqmsg
(dbs,killdebug,dbqmsg,dbqdump,dbqmsgstart,writemgrscreen,writewrkrscreens,dbqview,dbqsave,dbqload,pEnv),
11

dbqmsgstart
(dbs,killdebug,dbqmsg,dbqdump,dbqmsgstart,writemgrscreen,writewrkrscreens,dbqview,dbqsave,dbqload,pEnv),
11

dbqsave
(dbs,killdebug,dbqmsg,dbqdump,dbqmsgstart,writemgrscreen,writewrkrscreens,dbqview,dbqsave,dbqload,pEnv),
11

dbqview
(dbs,killdebug,dbqmsg,dbqdump,dbqmsgstart,writemgrscreen,writewrkrscreens,dbqview,dbqsave,dbqload,pEnv),
11

dbs
(dbs,killdebug,dbqmsg,dbqdump,dbqmsgstart,writemgrscreen,writewrkrscreens,dbqview,dbqsave,dbqload,pEnv),
11

dbs,killdebug,dbqmsg,dbqdump,dbqmsgstart,writemgrscreen,writewrkrscreens,dbqview,dbqsave,dbqload,pEnv,
11

dfileagg (snowdoop,filechunkname,
etc...), 24

dfilegetrows (snowdoop,filechunkname,
etc...), 24

disksort, 14, 29

30

INDEX 31

distribagg
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

distribcat
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

distribcounts
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

distribgetrows
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

distribisdt
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

distribmeans
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

distribrange
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

distribsplit
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

doclscmd
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

docmd
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

dTopKVals (snowdoop,filechunkname,
etc...), 24

dwhich.max
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

dwhich.min
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

exportlibpaths
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

fileagg (snowdoop,filechunkname,
etc...), 24

filecat (snowdoop,filechunkname,
etc...), 24

filechunkname (snowdoop,filechunkname,
etc...), 24

filegetrows (snowdoop,filechunkname,
etc...), 24

fileread (snowdoop,filechunkname,
etc...), 24

filesave (snowdoop,filechunkname,
etc...), 24

fileshuffle (snowdoop,filechunkname,
etc...), 24

filesort (snowdoop,filechunkname,
etc...), 24

filesplit (snowdoop,filechunkname,
etc...), 24

filesplitrand (snowdoop,filechunkname,
etc...), 24

findrow (findrow,makedff,[), 15
findrow,makedff,[, 15
formrowchunks

(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max,
16

geteltis
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

getnumdigs (snowdoop,filechunkname,
etc...), 24

getpte
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

hqs (hqs,hqsTest), 20
hqs,hqsTest, 20
hqsTest (hqs,hqsTest), 20

ipstrcat
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

killdebug
(dbs,killdebug,dbqmsg,dbqdump,dbqmsgstart,writemgrscreen,writewrkrscreens,dbqview,dbqsave,dbqload,pEnv),
11

linecount (snowdoop,filechunkname,
etc...), 24

makeddf (findrow,makedff,[), 15
matrixtolist

(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

32 INDEX

newadult, 21

parpdist, 21
partools (partools-package), 2
partools-package, 2
pEnv

(dbs,killdebug,dbqmsg,dbqdump,dbqmsgstart,writemgrscreen,writewrkrscreens,dbqview,dbqsave,dbqload,pEnv),
11

prgeng, 22
ptMEclose

(ptMEinit,ptMEinitSrvrs,ptMEinitCons,ptMEsend,ptMErecv,ptMEclose,
ptMEtest,ptMEtestWrkr), 23

ptMEinit
(ptMEinit,ptMEinitSrvrs,ptMEinitCons,ptMEsend,ptMErecv,ptMEclose,
ptMEtest,ptMEtestWrkr), 23

ptMEinit,ptMEinitSrvrs,ptMEinitCons,ptMEsend,ptMErecv,ptMEclose,
ptMEtest,ptMEtestWrkr, 23

ptMEinitCons
(ptMEinit,ptMEinitSrvrs,ptMEinitCons,ptMEsend,ptMErecv,ptMEclose,
ptMEtest,ptMEtestWrkr), 23

ptMEinitSrvrs
(ptMEinit,ptMEinitSrvrs,ptMEinitCons,ptMEsend,ptMErecv,ptMEclose,
ptMEtest,ptMEtestWrkr), 23

ptMErecv
(ptMEinit,ptMEinitSrvrs,ptMEinitCons,ptMEsend,ptMErecv,ptMEclose,
ptMEtest,ptMEtestWrkr), 23

ptMEsend
(ptMEinit,ptMEinitSrvrs,ptMEinitCons,ptMEsend,ptMErecv,ptMEclose,
ptMEtest,ptMEtestWrkr), 23

ptMEtest
(ptMEinit,ptMEinitSrvrs,ptMEinitCons,ptMEsend,ptMErecv,ptMEclose,
ptMEtest,ptMEtestWrkr), 23

ptMEtestWrkr
(ptMEinit,ptMEinitSrvrs,ptMEinitCons,ptMEsend,ptMErecv,ptMEclose,
ptMEtest,ptMEtestWrkr), 23

re_code
(caclassfit,caclasspred,vote,re_code),
9

read.table, 14
readnscramble (snowdoop,filechunkname,

etc...), 24

setclsinfo
(formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max),
16

snowdoop (snowdoop,filechunkname,
etc...), 24

snowdoop,filechunkname, etc..., 24

sortbin, 28
streambin (disksort), 14

vote
(caclassfit,caclasspred,vote,re_code),
9

write.table, 14
writechunk, 29
writemgrscreen

(dbs,killdebug,dbqmsg,dbqdump,dbqmsgstart,writemgrscreen,writewrkrscreens,dbqview,dbqsave,dbqload,pEnv),
11

writewrkrscreens
(dbs,killdebug,dbqmsg,dbqdump,dbqmsgstart,writemgrscreen,writewrkrscreens,dbqview,dbqsave,dbqload,pEnv),
11

	partools-package
	ca,cabase,calm,caglm,caprcomp,cakm,cameans,caquantile,caagg,caknn,carq
	caclassfit,caclasspred,vote,re_code
	cutbin
	dbs,killdebug,dbqmsg,dbqdump,dbqmsgstart,writemgrscreen,writewrkrscreens,dbqview,dbqsave,dbqload,pEnv
	disksort
	findrow,makedff,[
	formrowchunks,addlists,matrixtolist,setclsinfo,getpte,distribsplit,distribcat,distribagg,distribrange,distribcounts,distribgetrows,docmd,doclscmd,geteltis,distribmeans,distribisdt,ipstrcat,dwhich.min,dwhich.max
	hqs,hqsTest
	newadult
	parpdist
	prgeng
	ptMEinit,ptMEinitSrvrs,ptMEinitCons,ptMEsend,ptMErecv,ptMEclose, ptMEtest,ptMEtestWrkr
	snowdoop,filechunkname, etc...
	sortbin
	writechunk
	Index

