--- title: "Function List" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Function List} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` * *ML algorithms* * **qeAdaBoost()**: Ada Boosting, wraps **Jousboost** pkg * **qeDeepnet()**: wraps **deepnet** pkg * **qeDT()**: decision trees, wraps **party** pkg * **qeGBoost()**: gradient boosting, wraps **gbm** pkg * **qeKNN()**: k-Nearest Neighbors, wraps **regtools** pkg; includes predictor importance settings; allows linear interpolation within a bin * **qeLASSO()**: LASSO and ridge regression, wraps **glmment** pkg * **qeLightGBoost()**: gradient boosting, wraps **lightgbm** pkg * **qeliquidSVM**: wraps liquidSVM pkg * **qeLin()**: wraps R's **lm()** * **qeLinKNN()**: first fits **qeLin()**, followed by k-NN on the residuals to correct deviations from linearity * **qeLogit()**: wraps R's **glm()** * **qeNCVregCV**: wraps **ncvreg** package, linear gen. linear regression regularized via SCAD etc. * **qeNeural()**: wraps **keras** package, including CNN * **qePolyLASSO()**: LASSO/ridge applied to polynomial regression; wraps **glmnet**, **polyreg** pkgs * **qePolyLin()**: polynomial regression on linear models; uses Moore-Penrose inverse if overfitting; wraps **polyreg** pkg * **qePolyLog()**: polynomial regression on logistic models; wraps **polyreg** pkg * **qeRF()**: random forests, wraps **randomforest** pkg * **qeRFgrf**: random forests, wraps **grf** pkg; allows linear interpolation within a bin * **qeRpart()**: decision trees, wraps **Rpart** pkg; colorful tree plot * **qeRFranger()**: random forests, wraps **ranger** pkg * **qeskRF()**: random forests, wraps Python **Scilearn** pkg * **qeskSVM()**: SVM, wraps Python **Scilearn** pkg * **qeSVM()**: SVM, wraps **e1071** pkg * **qeSVMliquid()**: SVM, wraps **liquid SVM** pkg * **qeXGBoost()** wraps the **xgboost** pkg * *feature importance/selection* * **qeFOCI(), qeFOCIrand()**: fully nonparametric method for feature selection * **qeLASSO()**: for feature importance, apply **coef()** to return value * **qeLeaveOut1Var**: fits full model, then with all features but 1, for each feature, reporting difference in predictive power; use with any **qeML** predictive function * **qeRareLevels()**: investigates whether rare levels of a feature that is an R factor should be included * **qeRFranger**: **variable.importance** component of return value * *model development* * **doubleD()**: computation and plotting for exploring Double Descent * **plotClassesUMAP()**: plot first two UMAP components, color-coding classes * **plotPairedResiduals()**: plot residuals against pairs of features * **qeCompare()**: compare the accuracy various ML methods on a given dataset * **qeFT()**: automated grid hyperparameter search, *with Bonferroni-Dunn corrected standard errors* * **qePCA()**: find principal components, number specified by user, then fit the resulting model, according to **qe*** function specified by user * **qeROC()**: ROC computation and plotting, wraps **pROC** pkg * **qeUMAP()**: same as **qePCA()** but using UMAP * **replicMeans()**: (from **regtools**, included in **qeML**) averages output, e.g. **testAcc**, over many holdout sets * *application-specific functions (elementary)* * **qeText()** text classification * **qeTS():** time series * *prediction with missing values* * **qeLinMV()**, **qeLogitMV()**, **qeKNNMV()**, associated **predict()** generics for use with **toweranNA** pkg * *utilities, exploratory tools* * **cartesianFactor()**: with inputs of R factors of n1, n2... levels, creates a combined "superfactor" of n1*n2*... levels * **dataToTopLevels()**: applies **factorToTopLevels()** to all fadtors in the given data frame * **factorToTopLevels()**: removes rare levels from a factor * **levelCounts()**: performs a census of levels for each R factor in the dataset * **newDFRow()**: creates a new case to input to **predict()** * **qeParallel()**: apply "Software Alchemy" to parallelize **qe** functions